

Multiple Phase Flow

Burhan S Abdulrazak, Ph.D. Chemical Engineering Department

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Lecture Notes: Flow Regime Map of Gas-Liquid Systems (Horizontal and Vertical Pipes)

Introduction

- Gas-liquid flows are encountered in various industrial processes, such as chemical reactors, pipelines, and heat exchangers.
- The flow regime depends on the pipe orientation (horizontal or vertical), gas and liquid velocities, and fluid properties.

Flow regime maps are graphical tools used to predict the distribution and behavior of gas and liquid phases under different conditions.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Gas-Liquid Flow Regimes

1. Horizontal Pipe Flow Regimes

In horizontal pipes, gravity plays a significant role in determining the flow pattern.

Bubble Flow:

- Small gas bubbles are dispersed in the liquid phase.
- Gravity causes the bubbles to move preferentially toward the top of the pipe.

Stratified Flow:

- Gas flows above the liquid, forming distinct layers (strata).
- Occurs at low liquid and gas velocities.

Slug (Plug) Flow:

- Large gas bubbles alternate with liquid slugs.
- Gas bubbles occupy nearly the full pipe diameter and are separated by liquid.

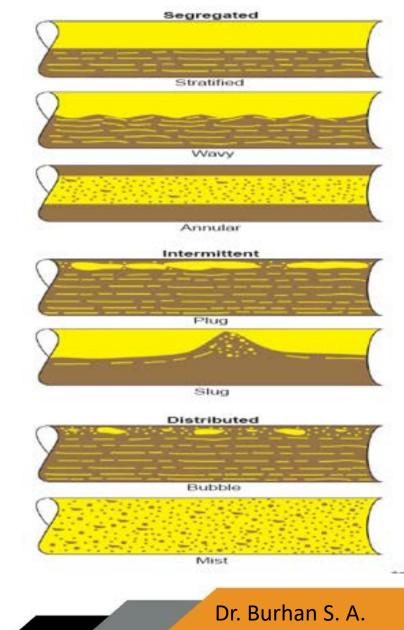
كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Wavy Flow:

- Liquid flows as a layer along the bottom, with gas on top.
- The gas-liquid interface forms waves due to gas velocity.

Annular Flow:


- Gas flows in the center with a thin liquid film on the pipe wall.
- Occurs at high gas velocities.

Mist Flow:

- Gas phase dominates, carrying small liquid droplets.
- Seen at very high gas velocities.

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

2. Vertical Pipe Flow Regimes

In vertical pipes, the gravitational force acts along the pipe axis, affecting phase distribution.

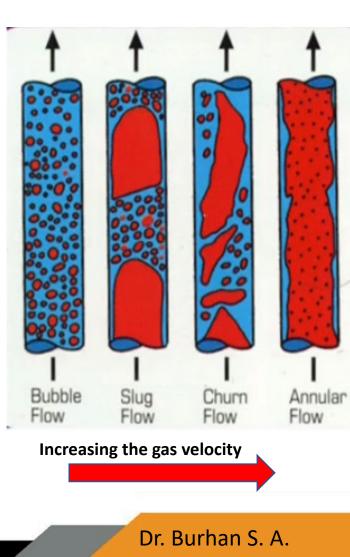
Bubble Flow:

- Similar to horizontal bubble flow but more symmetrical due to gravity alignment.
- Gas bubbles rise through the liquid phase.

Slug Flow:

- Large gas bubbles (Taylor bubbles) form and move upward.
- These bubbles are separated by liquid slugs.

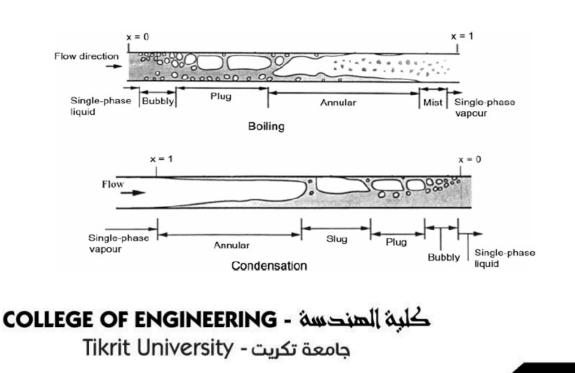
Churn Flow:

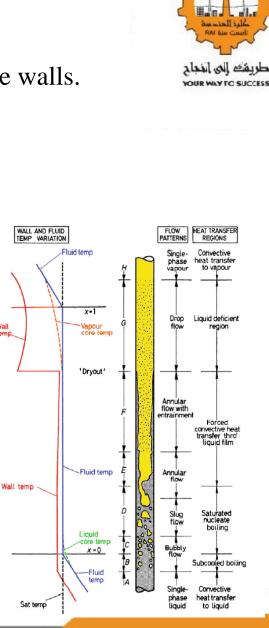

- A chaotic and highly turbulent flow regime.
- Transition between slug and annular flow.

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

طريقك إلى اخباح YOUR WAY TO SUCCESS




Annular Flow:

- Gas flows up the center, with a liquid film on the pipe walls. 0
- Liquid film may be thinner at higher gas velocities. 0

Mist Flow:

- Gas carries small liquid droplets upward. 0
- Dominates at high gas velocities. 0

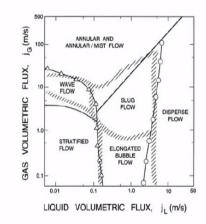
Dr. Burhan S. A.

Wall

temp

Flow Regime Map for Horizontal Pipes

Flow regimes in horizontal pipes are influenced by:


- Gravity: Causes phase separation.
- Interfacial forces: Control bubble and wave dynamics.

Key examples:

- **Taitel and Dukler Map (1976)**: Predicts transitions between stratified, slug, and annular regimes.
- Mandhane Map (1974): Simplified representation based on experimental data.

Flow Regimes Map for a Horizontal Pipe (2.5 cm)

Flow regimes map for flow of air/water mixtures in a horizontal, 2.5 cm diameter pipe. Adapted from Weisman (1983).

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

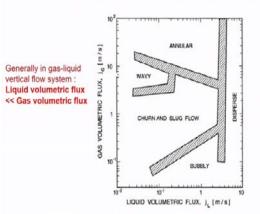
Flow Regime Map for Vertical Pipes

Flow regimes in vertical pipes are influenced by:

- **Gravity**: Promotes phase separation but causes distinct flow behavior compared to horizontal pipes.
- Interphase Momentum Transfer: Affects bubble dynamics and liquid entrainment.

Key examples:

- Hewitt and Roberts Map (1969): Widely used for vertical flows.
- Wallis Map (1969): Focuses on transitions to mist flow.


Mishima and Ishii Map (1984): Incorporates experimental data for small-diameter pipes.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Flow Regimes Map for a Vertical Pipe (2.5 cm)

A flow regime map for the flow of an air/water mixture in a vertical, **2.5** *cm* diameter *pipe showing the experimentally observed transition* regions hatched;

Comparison: Horizontal vs. Vertical Pipe Flow Regimes

Aspect	Horizontal Pipes	Vertical Pipes
Key Flow	Stratified, bubbly, slug, annular,	Bubbly, slug, churn, annular,
Regimes	dispersed	dispersed
Effect of	Promotes stratification and	Affects rise of gas bubbles and
Gravity	phase separation	droplet motion
Flow Pattern	Strong phase layering	Axisymmetric distribution (for many regimes)
Key	Stratified → Wavy → Slug →	Bubbly → Slug → Churn →
Transitions	Annular → Dispersed	Annular → Dispersed
Dominant Tools	Taitel & Dukler, Mandhane maps	Hewitt & Roberts, Wallis maps

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Factors Influencing Flow Regimes

Superficial Velocities:

•
$$v_{sL} = \frac{Q_L}{A}$$
: Liquid superficial velocity.
• $v_{sG} = \frac{Q_G}{A}$: Gas superficial velocity.

Pipe Diameter:

• Larger diameters favor stratified flow in horizontal pipes.

Fluid Properties:

• Surface tension, viscosity, and density impact the flow regime.

Orientation:

- Horizontal pipes experience gravity-driven stratification.
- Vertical pipes show more symmetric phase distribution.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Applications

Oil and Gas Pipelines:

• To manage multiphase transport in horizontal and vertical wells.

Chemical Reactors:

• Ensure proper gas-liquid mixing.

Heat Exchangers:

Optimize phase interaction for heat transfer.

Conclusion

Flow regime maps are essential tools for understanding gas-liquid behavior in horizontal and vertical pipes. Engineers use maps like the Mandhane, Taitel-Dukler, and Baker charts to design and optimize multiphase flow systems.

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

